On-line human activity recognition from audio and home automation sensors: Comparison of sequential and non-sequential models in realistic Smart Homes

نویسندگان

  • Pedro Chahuara
  • Anthony Fleury
  • François Portet
  • Michel Vacher
چکیده

Automatic human Activity Recognition (AR) is an important process for the provision of context-aware services in smart spaces such as voice-controlled smart homes. In this paper, we present an on-line Activities of Daily Living (ADL) recognition method for automatic identification within homes in which multiple sensors, actuators and automation equipment coexist, including audio sensors. Three sequence-based models are presented and compared: a Hidden Markov Model (HMM), Conditional Random Fields (CRF) and a sequential Markov Logic Network (MLN). These methods have been tested in two real Smart Homes thanks to experiments involving more than 30 participants. Their results were compared to those of three non-sequential models: a Support Vector Machine (SVM), a Random Forest (RF) and a non-sequential MLN. This comparative study shows that CRF gave the best results for on-line activity recognition from non-visual, audio and home automation sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence

This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...

متن کامل

Spatiotemporal knowledge representation and reasoning under uncertainty for action recognition in smart homes

We apply artificial intelligence techniques to perform data analysis and activity recognition in smart homes. Sensors embedded in smart home provide primary data to reason about observations and provide appropriate assistance for residents to complete their Activities Daily Livings (ADLs). These residents may suffer from different levels of Alzheimer disease. In this paper, we introduce a quali...

متن کامل

Sensor Selection in Smart Homes

There has been a lot of work focussing on activity recognition in smart homes, with the aim of the home being to monitor the activities of the inhabitant and identify deviations from the norm. For a smart home to support its inhabitants, the recognition system needs to accurately learn from the observations acquired through sensors, which are installed in the home. Given a predefined set of the...

متن کامل

A Genetic Algorithm-based Classifier Ensemble Optimization for Activity Recognition in Smart Homes

Over the last few years, one of the most common purposes of smart homes is to provide human centric services in the domain of u-healthcare by analyzing inhabitants’ daily living. Currently, the major challenges in activity recognition include the reliability of prediction of each classifier as they differ according to smart homes characteristics. Smart homes indicate variation in terms of perfo...

متن کامل

Context Recognition in Multiple Occupants Situations: Detecting the Number of Agents in a Smart Home Environment with Simple Sensors

Context-recognition and activity recognition systems in multi-user environments such as smart homes, usually assume to know the number of occupants in the environment. However, being able to count the number of users in the environment is important in order to accurately recognize the activities of (groups of) agents. For smart environments without cameras, the problem of counting the number of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JAISE

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016